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This letter is related to the paper of Amabili et al. (1998) and is written for three reasons: (i) to
explain better the approximation on tangential boundary conditions used in this paper, (ii) to
complete the literature review therein with additional papers, (iii) to correct a few misprints.
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1. CORRIGENDA

FIRST OF ALL, let us correct the misprints. The correct form of equations (4), (20a), (68) and
(A10) in Amabili et al. (1998) is, respectively;
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2. ADDITIONAL LITERATURE

Although the literature review in Amabili et al. (1998) is quite extensive, the opportunity is
grasped here to make it more complete. In particular, there is some additional work on
nonlinear vibrations of in"nitely long circular cylindrical shells (rings). Raouf & Nayfeh
(1990) and Nayfeh et al. (1991) studied the response of the system, retaining both the driven
and the companion modes, and found amplitude-modulated and chaotic solutions. The
method of multiple scales is applied to obtain a perturbation solution from the equation of
motion. In particular, Nayfeh et al. (1991) considered the presence of a 2 :1 internal
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786 AMABILI E¹ A¸.
resonance. Actually, these papers are only marginally related to the present study, as
a consequence of the di!erent and simpler geometry.

Iu & Chia (1988) studied antisymmetrically laminated cross-ply circular cylindrical shells
using the Timoshenko}Mindlin kinematic hypothesis, an extension of the Donnell theory
of shells. E!ects of transverse shear deformation, rotary inertia and geometrical imperfec-
tions are included in the analysis. The solution is obtained by the harmonic balance method
after Galerkin projection. Only undamped free vibrations are investigated.

Large-amplitude vibrations of thin, circular cylindrical shells with wafer, stringer or ring
sti!ening have been studied by Andrianov et al. (1996) using the Sanders nonlinear shell
equations. The solution is obtained using an asymptotic procedure and boundary layer
terms to satisfy the shell boundary conditions. Only the trend of the nonlinearity (backbone
curve) is obtained; the frequency-response relationship is not investigated.

Popov et al. (1998) and Foale et al. (1998) investigate di!erent methods to obtain
a low-dimensional system from the nonlinear equations of motion of a shallow cylindrical
shell panel under periodic axial forcing.

Only two papers on #uid-coupled shells have to be added. The "rst one is by Engineer
& Abrahams (1994), who examined the scattering of sound waves by a ba%ed circular
cylindrical shell of "nite length immersed in a light, compressible inviscid #uid. Nonlineari-
ties are attributed only to the shell dynamics, using the model developed by Chu (1961).
However, only axisymmetric modes are investigated and the shell is considered to have
vanishingly small bending sti!ness, i.e., it is assumed to be a cylindrical membrane.

The second one is by Amabili et al. (1999) related to the nonlinear stability of a supported
circular cylindrical shell with -ow. A seven-degree-of-freedom model is developed to solve
the problem. In particular, two asymmetric modes (driven and companion modes) are taken
for both m "1 and 2, where m is the number of longitudinal half-waves. Three axisymmet-
ric modes with an odd number of longitudinal half-waves are added to the four asymmetric
modes. Therefore, the model used can be considered an extension of the three-degree-of-
freedom one developed by Amabili et al. (1998), in which the arti"cial kinematic constraint
between the "rst and third axisymmetric modes, previously used to reduce the number of
degrees of freedom, is removed.

3. ON THE TANGENTIAL BOUNDARY CONDITIONS

In the paper (Amabili et al. 1998), the constraints on tangential displacements are satis"ed
&&on the average'', yet the continuity of circumferential displacement is satis"ed exactly.
What is truly meant by those statements, and how it is achieved, was inadequately and
insu$ciently clearly explained in the original paper; this is a good opportunity for clarifying
this issue more comprehensively. In the paper, the following conditions are imposed:
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Equation (1) assures a zero axial force N
x
&&on the average''. The exact condition N

x
"0 at

x"0 and ¸ requires that
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"0 for x"0, ¸ and for any h. (4)

Equation(4) can be manipulated to give
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The condition given by equation (5) cannot be satis"ed exactly for any h; the term on the
left-hand side is an oscillating function of main period 2p/n that has zero average on the
shell edge. Therefore, the condition N

x
"0 at x "0 and ¸ is satis"ed on the average, and it

is satis"ed exactly only at n points on each edge; N
x

undergoes oscillations in-between.
Equation (2) states that the axial displacement u is zero &&on the average'' at x"0 and ¸.

The exact condition u "0 at x "0, ¸ may be transformed into
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Using equations (3a), (4) and (5) of Amabili et al. (1998), equation (6) here gives
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After further manipulation, the following expression is obtained:

2¸nR(!¸2n2#ln2R2)[A
mn

(t)cos(nh)#B
mn

(t)sin(nh)]

(¸2n2#n2R2)2
"0. (8)

Equation (8), similar to equation (5) for Case 1, cannot be satis"ed exactly for any h.
Analogously, it is satis"ed on the average, while being exactly satis"ed at n points on each
edge.

Equation (3) replaces the exact condition v"0 at x"0 and ¸ that can also be rewritten
as
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By using equations (3a) and (6) of Amabili et al. (1998), equation (9) can be transformed into
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Unfortunately, the expression of Lu/Lh cannot be obtained, and equation (10) cannot be
expanded further. Therefore, equation (3) is introduced to replace equation (9). Equation (3)
can be rewritten as
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In conclusion, equation (9) is satis"ed on the average, i.e.
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Equation (13) states that u is continuous on the average. Equation (14) is identically satis"ed
by the mode expansion (7b) used by Amabili et al. (1998).
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